Question
Implement pow(x, n), which calculates x raised to the power n (\(x^n\)).
Example 1:
Input: 2.00000, 10
Output: 1024.00000
Example 2:
Input: 2.10000, 3
Output: 9.26100
Example 3:
Input: 2.00000, -2
Output: 0.25000
Explanation: 2-2 = 1/22 = 1/4 = 0.25
Note:
- \[-100.0 < x < 100.0\]
- n is a 32-bit signed integer, within the range \([−2^{31}, 2^{31} − 1]\)
Solution
class Solution:
def myPow(self, x, n):
"""
:type x: float
:type n: int
:rtype: float
"""
if n == 0:
return 1
if n == 1:
return x
if x == 0:
return 0
positive = True if n > 0 else False
n = -1 * n if n < 0 else n
dp = []
dp.append((1, x if positive else 1/x))
i = 2
while i <= n:
prev = dp[-1]
dp.append((i, prev[1] * prev[1]))
i *= 2
last = len(dp) - 1
res = dp[last][1]
n -= dp[last][0]
while n > 0:
for idx in range(last - 1, -1, -1):
power = dp[idx][0]
if power <= n:
last = idx
break
res *= dp[last][1]
n -= dp[last][0]
return res