Question
Given an array of integers A and let n to be its length.
Assume Bk
to be an array obtained by rotating the array A
k positions clock-wise, we define a “rotation function” F
on A
as follow:
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]
.
Calculate the maximum value of F(0), F(1), …, F(n-1).
Note: n is guaranteed to be less than 105.
Example:
A = [4, 3, 2, 6]
F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26
So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
Solution
class Solution {
public int maxRotateFunction(int[] A) {
int n = A.length;
if(n <= 1) return 0;
int sum = 0;
for(int i = 0; i < n; sum += A[i++]);
int F = 0;
for(int i = 1; i < n; F += i * A[i++]);
int res = F;
for(int i = 1; i < n; i++) {
F = sum + F - A[n - i] * n;
res = Math.max(F, res);
}
return res;
}
}