You can build dynamic functions with a nested function by passing different parameters into it. This technique of using the values of outside parameters within a dynamic function is called closures. For example,
from urllib.request import urlopen
def urltemplate(template):
def opener(**kwargs):
return urlopen(template.format_map(kwargs))
return opener
# Example use
yahoo = urltemplate('http://finance.yahoo.com/d/quotes.csv?s={names}&f={fields}')
for line in yahoo(names='IBM,AAPL,FB', fields='sl1c1v'):
print(line.decode('utf-8'))
A key feature of a closure is that it remembers the environment in which it was defined. Thus, in the solution, the opener()
function remembers the value of the template
argument, and uses it in subsequent calls.
Closure with State
Closure is useful to replace single-method classes, because in many cases, the only reason you might have a single-method class is to store additional state for use in the method. You can store states in the outer method of a closure like this:
def make_handler():
sequence = 0
def handler(result):
nonlocal sequence # Required for assignment to outers scope
sequence += 1
print('[{}] Got: {}'.format(sequence, result))
return handler
Advanced Usage: Simulate a Class with Closure
# Simple tool for making class-like objects using nested scopes and closures in Python 3
#
# Advantages:
# * cleaner coding style
# * faster internal references
# * faster external calls - no bound methods or rewriting arg tuples
# * inlined initialization code
# * painlessly delegate work to other objects
#
# Disadvantages:
# * need setter methods to update attributes
# * inheritance is not supported
# * slower calls to special methods
# * there is no "self"
# * limited support for help()
import sys
class Instance:
'Instances where methods are implemented as closures'
# The Python interpreter looks for special methods in the class dictionary
# Add support for them by dispatching them back to the instance methods
smethods = '''__bool__ __int__ __float__ __complex__ __index__
__len__ __getitem__ __setitem__ __delitem__ __contains__
__iter__ __next__ __reversed__
__call__ __enter__ __exit__
__str__ __repr__ __bytes__ __format__
__eq__ __ne__ __lt__ __le__ __gt__ __ge__ __hash__
__add__ __mul__ __sub__ __truediv__ __floordiv__ __mod__
__and__ __or__ __xor__ __invert__ __lshift__ __rshift__
__pos__ __neg__ __abs__ __pow__ __divmod__
__round__ __ceil__ __floor__ __trunc__
__radd__ __rmul__ __rsub__ __rtruediv__ __rfloordiv__ __rmod__
__rand__ __ror__ __rxor__ __rlshift__ __rrshift__
__rpow__ __rdivmod__
__get__ __set__ __delete__
__copy__ __deepcopy__ __reduce__ __reduce_ex__
__getstate__ __setstate__ __getnewargs__ __getinitargs__
__subclasshook__ __subclasscheck__ __instancecheck__
__dir__ __sizeof__'''.split()
for sm in smethods:
setattr(Instance, sm, lambda self, *args, sm=sm: self.__dict__[sm](*args))
def classify(local_dict=None):
'Move local definitions to an instance dictionary'
o = Instance()
if local_dict is None:
local_dict = sys._getframe(1).f_locals
vars(o).update(local_dict)
return o
############################################################################
### Simple example #######################################################
def Animal(name):
'Animal-like class'
def speak():
print('I am', name)
def set_name(newname):
nonlocal name
name = newname
def __getitem__(key):
return '%s is %sing' % (name, key.title())
return classify()
d = Animal('Fido')
print(d.name)
d.speak()
d.set_name('Max')
d.speak()
print(d['fetch'])
############################################################################
### Practical example ####################################################
def PriorityQueue(initial_tasklist):
'Retrieve tasks by priority. Tasks can be removed or reprioritized.'
from heapq import heappush, heappop
pq = [] # list of entries arranged in a heap
entry_finder = {} # mapping of tasks to entries
REMOVED = object() # placeholder for a removed task
count = 0 # unique sequence count
def add(task, priority=0):
'Add a new task or update the priority of an existing task'
nonlocal count
if task in entry_finder:
remove(task)
entry = [priority, count, task]
entry_finder[task] = entry
heappush(pq, entry)
count += 1
def remove(task):
'Mark an existing task as REMOVED. Raise KeyError if not found.'
entry = entry_pop(task)
entry[-1] = REMOVED
def pop():
'Remove and return the lowest priority task. Raise KeyError if empty.'
while pq:
priority, count, task = heappop(pq)
if task is not REMOVED:
del entry_finder[task]
return task
raise KeyError('pop from an empty priority queue')
def __iter__():
'Show task in order of priority'
pq.sort()
for priority, count, task in pq:
if task is not REMOVED:
yield task
def __repr__():
return 'PriorityQueue()'
def __str__():
return 'PriorityQueue with %d pending tasks' % __len__()
# Delegate some of the work to the entry_finder dictionary
__contains__ = entry_finder.__contains__
__len__ = entry_finder.__len__
entry_pop = entry_finder.pop
# No separate method needed for initialization
for task, priority in initial_tasklist:
add(task, priority)
return classify()
if __name__ == '__main__':
# Note: Client code is written normally. It makes no difference
# whether a PriorityQueue was implemented as a regular class or
# implemented using closures.
todo = PriorityQueue([('fish', 5), ('play', 3)])
todo.add('code', 1)
todo.add('sleep', 6)
print(list(todo))
print('Pop the topmost task: %r' % todo.pop())
print("Deprioritize 'play'")
todo.add('play', 10)
todo.remove('sleep')
print(len(todo))
print(list(todo))
print(todo)
print('fish' in todo)
help(PriorityQueue)
help(todo.add)
There are two main features that make this work. First, nonlocal
declarations make it possible to write functions that change inner variables. Second, function attributes allow the accessor methods to be attached to the closure function in a straightforward manner where they work a lot like instance methods (even though no class is involved).
Interestingly, this code runs a bit faster than using a normal class definition.
Credits: Raymond Hettinger